53

On formal and informal reasoning in program construction
R.J.R. Back, Abo Akademi

To Jaco

The problems with constructing and maintaining large programs are well known. The low
quality of software is certainly one of the main stumbling factors in the computerization process,
and one that has caused more frustration than any other aspect of this technology. Although the
problem is so well recognized, it seems very difficult to cure. Different proposals have been put
forward, such as higher level specification and programming languages, a better organization
of the program construction process and quality control measures, improved testing methods
and more formal methods for program construction. It is this last proposal that we will study
in more detail in this short note.

Before we look at the formal methods, to see whether they promise a solution to the software
quality problem, let us turn the question upside down. Rather than ask why the present informal
program construction methods do not work well enough, we ask why they do work as well as
they do. The programs may be bugridden and difficult to maintain, but for most cases they
do work. There must be something in the present informal methods that does go quite a long
way towards the goal of quality software. This suggests that the informal methods are good in
themselves, but that they are not sufficient for achieving very high levels of quality.

The approach we want to put forward here is that the informal and the formal approaches
complement each other, in a way that is in close analogue to the usual way in which everyday
science is conducted. Our starting point is the view of scientific work as it is done in e.g. the
natural sciences, where empirical and theoretical studies form a close symbiosis. This view can
be described roughly (and somewhat naively) as follows.

1. Understanding a new phenomenon in e.g. physics starts by empirical observations. The
phenomenon is identified and its manifestations are studied by empirical experiments.
These experiments are carried out until some kind of general picture emerges, which
provides some (often partial) explanation of what is going on. The experiments are done
against a body of prior knowledge, both theoretical and experimental, which guides the
experiments. In other words, the experiments are not done in a vacum, but experimenters
have a reasonably good idea of what they are looking for.

2. Based on the initial experiments, an explanation of the phenomenon is attempted. This
is a generalization, i.e. a model that abstracts away from the specific cases that have been
studied in the experiments to provide a more general description of the phenomenon. The
model also predicts the outcome of experiments which have not yet been made.

3. This general explanation is then tested against the reality by performing new experiments.
The outcome of these experiments is predicted by the generalization. The new experiments
should be chosen such that the possibility of falsifying the model is as big as possible. In
this way erroneous generalizations can be dispensed with quickly.



54

4. The new experiments often do not totally falsify the generalization, but point at weak-
nesses in it. Based on these new experiments, the general explanation is modified so that
the new experiments are also taken into account. The modified explanation is then again
tested experimentally. The cycle is repeated until there is no contradicting evidence from
experiments. The testing of the hypothesis does not have to be made by the same re-
searchers, it may be done by different research groups, and the activity may be stretched
over space and time (even over very long periods, like years, decades and centuries).

Different philosophical theories of science differ in how this enquiry is carried out: when a
hypothesis or theory can be considered confirmed, how the experiment should be tested and
so on. When certain assumptions about the physical reality are satisfied, these questions can
e.g. be analyzed by statistical means. The theories agree, however, on the need for the duality
between theory and experiments, and on the different nature of these two activities. Theory is
deductive while experimentation is inductive. A theory should be internally consistent, and it
should be built according to standard mathematical requirements of rigour and exactness: the
definitions should be exact and clear, the theorems should be well defined and the proofs should
be rigourous. The theories must have an interpretation in the real world to be useful, but they
must also by themselves form a consistent and rigorously developed mathematical theory.

Experimentation studies the phenomenon as it manifests itself in reality. It is often carried
out against a body of theory, so it is usually aimed at testing some hypothesis by which the
theory is extended, but not all of it. Experimentation seems to have two different purposes: on
one hand it is used as an inspiration for formulating new theories and explanations (hypothesis),
on the other hand it is used to test the validity of existing hypothesis, formed on the basis of
previous experiments or derived (deductively) from hypothesis formed on the basis of previous
tests.

Informal methods in program construction Let us now consider how the above relates
to program construction. Our first observation is that informal program construction, as it
is done in practice, works because it applies the experimental-deductive scientific method. In
constructing a program, one thinks in terms of specific examples (test cases). These examples
are generalized to a program. The program is a true generalization, because it is intended to
also apply to other cases than those considered explicitly. After constructing the program, it is
tested on a collection of test cases. These form the new experiments. Usuallly the test cases are
constructed so that the likelyhood of detecting an error is as big as possible, i.e. the purpose
is to refute the hypothesis that the program works correctly. If a test reveals an error, the
source of the error is located (a bug), the hypothesis is revised (the bug is fixed) and testing of
the new hypothesis is started. This process is repeated until no further errors are detected, in
which case the program is accepted as correct (delivered to the customer), i.e. the hypothesis
(or theory) is considered to be confirmed.

Program construction is thus a classical example of the experimental scientific method: the
interplay between experiments and theory. Even the criteria for accepting a hypothesis are
the same, the hypothesis is accepted when all experiments confirm it. Also, this acceptance is
conditional, as it is recognized that further experimentation may still invalidate the hypothesis
(as it usually does). The informal program construction method does indeed work in practice,
for the same reason that the experimental scientific method works in general: there is enough
regularity in the phenomen studied that a reasonably careful testing gives a good basis for
assuming that the theory is valid for most cases that can occur in practice.

Formal methods in program construction After having convinced ourselves that the
practical approach to program construction rests on good, solid scientific methods, let us now



55

turn to the issue of formal reasoning. The main question here is whether we can do better than
this. Our first observation is that the analogy between computer programs and the physical
reality that natural scientists study is not complete: the physical reality is given and we only
know about it through our experiments, whereas the program is constructed by ourselves. In
other words, we have complete information about the program and its working, whereas we do
not have complete information about the physical reality. Taking the experimental scientists
approach to program construction therefore ignores information that is available. The program
that we ourselves have constructed is treated as a black box, the inner workings of which is
unknown to us. Or it is treated as a white (or transparent) box, whose inner workings can be
seen, but where the function is so complex that it cannot be understood sufficiently to be able
to predict the outcome in general.

The analogy we are looking for is maybe then not the way in which the physicist construct
theories, but more the way in which mathematicians construct theories, because the latter
are in the same situation as we are: they are working in a reality that they have constructed
themselves. The problems in mathematics come from a similar source as in programming: the
reality that has been constructed is so complex that its working cannot be understood in full
detail at once, even if it is in fact known in complete detail.

The way in which mathematicians prove theorems might be a good starting point. We
can consider a program as a theorem: it asserts that a certain algorithmically defined function
satisfies certain desirable properties. In mathematics we have an informal and a formal way
of reasoning. The informal way consists in constructing special cases or examples which illus-
trate the phenomenon being considered. From these examples a generalization is then made,
which again covers more cases and examples than what has actually been considered. These
generalizations (lemmas, definitions etc.) are then used in the proof. The proof itself proceeds
by formal reasoning. If the theorem can be shown to be correct by formal (or mathematically
rigorous) reasoning, then it is accepted as correct. If, however, the proof cannot be constructed,
then the usual recourse is to analyze the difficulty by trying to construct new examples and
cases where the difficulty is identified. Based on this experimental study, the generalizations
are modified so that the difficulties are avoided. This process may be continued until the proof
succeeds or until a counterexample is found which finally kills all hopes that the theorem could
be fixed to be true.

Comparing this approach to the purely experimental approach by the physicists, we see one
major difference. The confirmation of the hypothesis is not done by testing but by deductive
reasoning. In other words, the hypothesis is accepted if it can be proved rigorously that it is
correct. Only if the proof does not succeed is the experimental stage re-entered. Hence, the
role of experiments and testing in mathematics is not to confirm a hypothesis but to generate
new hypothesis or to refute the given hypothesis by counterexamples. Still, the experimental
part of the mathematical work is very important, and often provides the inspiration and the
real workbench where mathematical discoveries are made.

A view of program construction How would we apply this same methodology in the
construction of computer programs. First of all, we need to recognize the important role that
experimentation plays in program construction, also in the case where the goal is to construct
programs that are formally verified correct. In the same way as in mathematics, it provides
the playground on which inventions are made. These inventions are based on intuition, i.e.
based on the understanding of the problem that has been gained from analyzing a collection of
examples, in combination whith the general understanding that has been gained previously. In
part it can also arize from purely formal manipulations, based on the mathematical structure of
the hypothesis and the formal deductions that can be made from it. However, the first source



56

of inventions would seem to be the more important one, at least as long as the mathematical
theory of program construction is as rudimentary as it is today, with few powerful theorems
and results to rely upon and no uniform basic theory agreed upon.

The second issue is to recognize the role of verification in program construction: It is the
only tool available for confirming that the program works correctly. Difficult as it may be, we
cannot hope for achieving greater confidence in the correctness of our programs unless we can
verify mathematically that they are correct and have some kind of machine checking of the
proofs.

Program construction thus takes place in two parallel but separate worlds, the ezperimental
testing world and the deductive confirmation world. The interplay between these two worlds
occurs in most program construction situations, from direct verification that a program meets
its specification to program construction by stepwise refinement and the construction of precise
specifications for some required sofware product. To only have experimentation and restrict
oneself to experimental confirmation of program correctness is to settle for less than 1s achiev-
able. To only accept formal reasoning is to deny the main source of inspiration and invention
that underlies the construction of efficient and useful programs.

The restriction to experimentation alone is common and even prevailing today, and is usu-
ally based on the view that program verification does not work in practice anyway, at least
not for larger programs (an issue that cannot be considered resolved yet). The restriction
to formal methods only has not to my knowledge really been put forward seriously.A some-
what less extreme but still one sided position is, however, to accept that the informal test-
ing/experimentation activity is needed, but that it need not be recorded in the development
process: all experimentation should be done behind the scenes and only the formal reasoning
should be recorded. This position, analogues to Gauss’ view on mathematical proofs, leads to
terse and unintuitive presentations of program constructions. (Often this is only a question of
how the material is presented and not an explicitly taken standpoint).

Not recording the intuition and experimentation behind the construction makes the the
programs, proofs and program derivations difficult to follow and understand. In this one follows
established mathematical tradition: the definitions and proofs are often presented without
explaining the intuition behind them. This makes it difficult for people who try to get into
a subject to understand what is being done and why. The analogy with poorly documented
program text should be obvious here. The need for giving the intuition is felt most strongly
in textbooks in mathematics and, as a consequence, the purely mathematical treatment is
extended with intuitive explanations, examples and counterexamples as well as exercises. All
these serve the same purpose, to present the experimental background that has lead to the
formulation of the theory.

A consequence of not recognizing the important role of experimentation is that the need for
methods and tools which support the experimentation phase of formal program construction
is also not recognized. Consequently no tools are built for this. Such tools can be constructed
today; the modern workstation environment with its powerful graphic tools should provide a
good workbench for experimentation. The important aspects of such an environment is that it
should be very flexible and strongly visually oriented. It should encourage both informal exper-
imentation and formal deduction and verification. It should also record both these activities in
a consistent and structured way, so that the necessary documentation is created automatically
during program construction, as a byproduct of it.





